Search results for "thin film silicon"
showing 3 items of 3 documents
Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids
2015
The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids wi…
Photovoltaic facade: Comparison of actual technologies
2017
This article aims to establish the economic contribution of a photovoltaic system placed on a façade of a building, replacing traditional elements such as windows and glass-cement walls with active elements. The aim is to compare the behavior of next-generation systems, which favor architectonical integration, with traditional ones. Two novel systems have been taken into account: a dye sensitized solar cell (DSSC) and blue and grey thin film silicon panels. Different generation systems have been tested and compared in terms of efficiency and fill factor.
Light trapping by plasmonic nanoparticles
2020
Abstract Metallic nanoparticles sustaining localized surface plasmon resonances are of great interest for enhancing light trapping in thin film photovoltaics. In this chapter, we explore the correlation between the structural and optical properties of self-assembled silver nanostructures fabricated by a solid-state dewetting process on various substrates relevant for silicon photovoltaics and later integrated into plasmonic back reflectors. Our study allows us to optimize the performance of nanostructures by identifying the fabrication conditions in which desirable circular and uniformly spaced nanoparticles are obtained. Second, we introduce a novel optoelectronic spectroscopic method that…