Search results for "thin film silicon"

showing 3 items of 3 documents

Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids

2015

The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids wi…

Materials sciencePhotovoltaics light trapping plasmonics Mie scatterers thin film silicon solar cells.NanoparticlePhysics::OpticsBioengineeringMie scatterersMie scattererSettore ING-INF/01 - Elettronica7. Clean energyLight scatteringplasmonicsthin film silicon solar cellsMechanics of MaterialGeneral Materials SciencePlasmonic solar cellElectrical and Electronic EngineeringThin filmPlasmonbusiness.industryScatteringMechanical EngineeringChemistry (all)Surface plasmonNanocrystalline siliconGeneral ChemistryPlasmonicThin film silicon solar cellphotovoltaicsMechanics of MaterialsOptoelectronicslight trappingMaterials Science (all)businessPhotovoltaic
researchProduct

Photovoltaic facade: Comparison of actual technologies

2017

This article aims to establish the economic contribution of a photovoltaic system placed on a façade of a building, replacing traditional elements such as windows and glass-cement walls with active elements. The aim is to compare the behavior of next-generation systems, which favor architectonical integration, with traditional ones. Two novel systems have been taken into account: a dye sensitized solar cell (DSSC) and blue and grey thin film silicon panels. Different generation systems have been tested and compared in terms of efficiency and fill factor.

Materials scienceSilicon020209 energyPhotovoltaic systemEnergy Engineering and Power Technologychemistry.chemical_elementbuilding integrated photovoltaic02 engineering and technologySettore ING-INF/01 - ElettronicaEngineering physicsDye-sensitized solar cellchemistryPhotovoltaic module0202 electrical engineering electronic engineering information engineeringEconomic contributionFacadeFill factorDSSCElectrical and Electronic EngineeringThin filmthin film silicon2017 IEEE International Telecommunications Energy Conference (INTELEC)
researchProduct

Light trapping by plasmonic nanoparticles

2020

Abstract Metallic nanoparticles sustaining localized surface plasmon resonances are of great interest for enhancing light trapping in thin film photovoltaics. In this chapter, we explore the correlation between the structural and optical properties of self-assembled silver nanostructures fabricated by a solid-state dewetting process on various substrates relevant for silicon photovoltaics and later integrated into plasmonic back reflectors. Our study allows us to optimize the performance of nanostructures by identifying the fabrication conditions in which desirable circular and uniformly spaced nanoparticles are obtained. Second, we introduce a novel optoelectronic spectroscopic method that…

Plasmonic nanoparticlesMaterials scienceSiliconbusiness.industryPhysics::Opticschemistry.chemical_elementSettore ING-INF/01 - ElettronicachemistryPhotovoltaicsLight trapping Localized surface plasmon resonance Photocurrent enhancement Plasmon-enhanced Self-assembly Silver nanoparticles Thin film silicon solar cellsOptoelectronicsQuantum efficiencyDewettingThin filmbusinessPlasmonLocalized surface plasmon
researchProduct